
1

Making Web3 Space Safer for Everyone

DragonSwap
Core & Periphery
Security Assessment

Published on: 17 Apr. 2024
Version v1.0

COPYRIGHT 2024. KALOS. all rights reservedS

2

Security Report Published by KALOS
v1.0 17 Apr. 2024

Found issues

Severity of Issues Findings Resolved Acknowledged Comment

Critical - - -

High - - - -

Medium - - - -

Low 1 1 - -

Tips 4 - 4 -

COPYRIGHT 2024. KALOS. all rights reserved

3

TABLE OF CONTENTS
TABLE OF CONTENTS
ABOUT US
Executive Summary
OVERVIEW

Protocol overview
Scope
Access Controls

FINDINGS
1. Fee tier in the implementation does not match the fee in the document
2. Denial of Service in Permit of SwapRouter
3. Unnecessary function leads to less fee distribution
4. Outdated MultiSigWallet
5. Centralization Risk of arbitrary call in factory owner

DISCLAIMER
Appendix. A

Severity Level
Difficulty Level
Vulnerability Category

COPYRIGHT 2024. KALOS. all rights reserved

4

ABOUT US

Making Web3 Space Safer for Everyone

KALOS is a flagship service of HAECHI LABS, the leader of the global blockchain industry.
We bring together the best Web2 and Web3 experts. Security Researchers with expertise
in cryptography, leaders of the global best hacker team, and blockchain/smart contract
experts are responsible for securing your Web3 service.

Having secured $60B crypto assets on over 400 main-nets, Defi protocols, NFT services,
P2E, and Bridges, KALOS is the only blockchain technology company selected for the
Samsung Electronics Startup Incubation Program in recognition of our expertise. We have
also received technology grants from the Ethereum Foundation and Ethereum Community
Fund.

Inquiries: audit@kalos.xyz
Website: https://kalos.xyz

COPYRIGHT 2024. KALOS. all rights reserved

mailto:audit@kalos.xyz
https://kalos.xyz

5

Executive Summary
Purpose of this report

This report was prepared to audit the security of Dragon Swap’s AMM DEX and staking
contracts, which are forks of the PancakeSwap. KALOS conducted the audit focusing on
whether the system created by Dragon Swap is soundly implemented and designed as
specified in the published materials, in addition to the safety and security of the AMM
DEX and staking contracts.
In detail, we have focused on the following
● Project availability issues like Denial of Service
● Strict access control on storage variables to prevent unauthorized access
● Function access control measures
● Reward miscalculation
● Risk from fee and tick spacing modification
● Arithmetic error

Codebase Submitted for the Audit

The codes used in this Audit can be found on GitHub

- https://github.com/dragon-swap-klaytn/dragon-smart-contracts

The last commit of the code used for this Audit is

- d92a40a2261244aa682eb540fe1e94f4d5278b30

The last commit of the code patched for this Audit is

- bad8f6d7ba6cfc9800dc9de6561f483906bd5c13

COPYRIGHT 2024. KALOS. all rights reserved

6

Audit Timeline

Date Event

2024/04/03 Audit Initiation

2024/04/17 Delivery of v1.0 report.

Findings

KALOS found 1 Low severity and 4 Tips issues that would improve the code’s usability or
efficiency upon modification.

Severity Issue Status

Tips 1. Fee tier in the implementation does not match the fee in
the document (Acknowledged - v1.0)

Tips 2. Denial of Service in Permit of SwapRouter (Acknowledged - v1.0)

Low 3. Unnecessary function leads to less fee distribution (Resolved - v1.0)

Tips 4. Outdated MultiSigWallet (Acknowledged - v1.0)

Tips 5. Centralization Risk of arbitrary call in factory owner (Acknowledged - v1.0)

COPYRIGHT 2024. KALOS. all rights reserved

7

OVERVIEW
Protocol overview

• AMM Pool
The Automated Market Maker Pool contracts are a fork of the PancakePair and
PancakeV3Pool contracts. The v2-core contracts implement a CPMM pool, and the v3-core
contracts implement a concentrated liquidity pool. The DragonSwap team adjusted the
protocol fee rate of both v2 and v3 pools. Furthermore, the swap fee tier of the v3-core
contract varies as the tick spacing of the pool set is adjusted. The pools are deployed using
factory contracts. The owner of the factory contract is capable of collecting the protocol
fee accumulated on the pools and setting the LM Pool of the pools.

• Swap Router
The router contract serves as a liaison between the user and the pool contracts. It enables
a multi-hop swap that user can swap a token with another token even if the pair pool
doesn’t exist. The router contract also checks if the slippage the user can bear is actually
satisfied during the swap process. Additionally, this router does not support stable swap.

• Non-Fungible Token Position Manager
On the concentrated liquidity pools, users can mint and burn the position NFTs through
the NonfungiblePositionManager contract. As the user’s position data is inscribed in the
NFT, the user can send or receive the pool’s position by transferring the NFT.
This contract enables the user to mint and burn the pool’s position and increase and
decrease the liquidity of the position, and also, collect the swap fees accumulated on the
position.

•Master Chef
Users can deposit the position NFT to the Master Chef V3 contract or LP tokens to the V2
contract. The owner of the Master Chef contract sets a reward emission rate and each
pool's reward weight. As the time passed, the staked LP tokens or NFTs accrue the reward.
The accumulated rewards distributed to the users pro rata to their share of liquidity and
the weight of the pool the position made. The V2 contract calculates the liquidity shares

COPYRIGHT 2024. KALOS. all rights reserved

8

based on the total liquidity and the V3 contract calculates the shares on the basis that the
liquidity actually used (based on the current tick).

• LM Pool
The PancakeV3LmPool contract used by the MasterChefV3 contract. This contract tracks
the pool’s tick movement such that it calculates the growth reward amounts and the user
position’s reward amounts.

COPYRIGHT 2024. KALOS. all rights reserved

9

Scope
masterchef-v2/contracts
├──MasterChefV2.sol
└── interfaces
└── IERC20Metadata.sol

masterchef-v3/contracts
├── Enumerable.sol
├──MasterChefV3.sol
├── interfaces
│ ├── IFarmBooster.sol
│ ├── ILMPool.sol
│ ├── ILMPoolDeployer.sol
│ ├── IMasterChefV2.sol
│ ├── IMasterChefV3.sol
│ ├── INonfungiblePositionManager.sol
│ ├── INonfungiblePositionManagerStruct.sol
│ ├── IPancakeV3Pool.sol
│ ├── IReceiver.sol
│ └── IWETH.sol
├── libraries
│ └── SafeCast.sol
└── utils
└──Multicall.sol

v2-core/contracts
├── PancakeERC20.sol
├── PancakeFactory.sol
├── PancakePair.sol
├── PancakeRouter.sol
├── PancakeRouter01.sol
├── PancakeZapV1.sol
├── interfaces
│ ├── IERC20.sol
│ ├── IPancakeCallee.sol
│ ├── IPancakeERC20.sol
│ ├── IPancakeFactory.sol
│ ├── IPancakeMigrator.sol
│ ├── IPancakePair.sol

COPYRIGHT 2024. KALOS. all rights reserved

10

│ ├── IPancakeRouter01.sol
│ ├── IPancakeRouter02.sol
│ └── IWETH.sol
├── libraries
├── Babylonian.sol
├──Math.sol
├── PancakeLibrary.sol
├── SafeMath.sol
├── UQ112x112.sol
└──WBNB.sol

v3-core/contracts
├── PancakeV3Factory.sol
├── PancakeV3Pool.sol
├── PancakeV3PoolDeployer.sol
├── interfaces
│ ├── IERC20Minimal.sol
│ ├── IPancakeV3Factory.sol
│ ├── IPancakeV3Pool.sol
│ ├── IPancakeV3PoolDeployer.sol
│ ├── callback
│ │ ├── IPancakeV3FlashCallback.sol
│ │ ├── IPancakeV3MintCallback.sol
│ │ └── IPancakeV3SwapCallback.sol
│ └── pool
│ ├── IPancakeV3PoolActions.sol
│ ├── IPancakeV3PoolDerivedState.sol
│ ├── IPancakeV3PoolEvents.sol
│ ├── IPancakeV3PoolImmutables.sol
│ ├── IPancakeV3PoolOwnerActions.sol
│ └── IPancakeV3PoolState.sol
└── libraries
├── BitMath.sol
├── FixedPoint128.sol
├── FixedPoint96.sol
├── FullMath.sol
├── LiquidityMath.sol
├── LowGasSafeMath.sol
├── Oracle.sol
├── Position.sol
├── SafeCast.sol

COPYRIGHT 2024. KALOS. all rights reserved

11

├── SqrtPriceMath.sol
├── SwapMath.sol
├── Tick.sol
├── TickBitmap.sol
├── TickMath.sol
├── TransferHelper.sol
└── UnsafeMath.sol

v3-lm-pool/contracts
├── PancakeV3LmPool.sol
├── PancakeV3LmPoolDeployer.sol
├── interfaces
│ ├── ILMPool.sol
│ ├── IMasterChefV3.sol
│ └── IPancakeV3LmPool.sol
└── libraries
└── LmTick.sol

v3-periphery/contracts
├── NFTDescriptorEx.sol
├── NonfungiblePositionManager.sol
├── NonfungibleTokenPositionDescriptor.sol
├── NonfungibleTokenPositionDescriptorOffChain.sol
├── NonfungibleTokenPositionDescriptorOffChainV2.sol
├── PancakeInterfaceMulticallV2.sol
├── SwapRouter.sol
├── V3Migrator.sol
├── base
│ ├── BlockTimestamp.sol
│ ├── ERC721Permit.sol
│ ├── LiquidityManagement.sol
│ ├──Multicall.sol
│ ├── PeripheryImmutableState.sol
│ ├── PeripheryPayments.sol
│ ├── PeripheryPaymentsWithFee.sol
│ ├── PeripheryValidation.sol
│ ├── PoolInitializer.sol
│ └── SelfPermit.sol
├── interfaces

COPYRIGHT 2024. KALOS. all rights reserved

12

│ ├── IERC20Metadata.sol
│ ├── IERC721Permit.sol
│ ├── IMulticall.sol
│ ├── INonfungiblePositionManager.sol
│ ├── INonfungibleTokenPositionDescriptor.sol
│ ├── IPeripheryImmutableState.sol
│ ├── IPeripheryPayments.sol
│ ├── IPeripheryPaymentsWithFee.sol
│ ├── IPoolInitializer.sol
│ ├── IQuoter.sol
│ ├── IQuoterV2.sol
│ ├── ISelfPermit.sol
│ ├── ISwapRouter.sol
│ ├── ITickLens.sol
│ ├── IV3Migrator.sol
│ └── external
│ ├── IERC1271.sol
│ ├── IERC20PermitAllowed.sol
│ └── IWETH9.sol
├── lens
│ ├── PancakeInterfaceMulticall.sol
│ ├── Quoter.sol
│ ├── QuoterV2.sol
│ └── TickLens.sol
├── libraries
├── BytesLib.sol
├── CallbackValidation.sol
├── ChainId.sol
├── HexStrings.sol
├── LiquidityAmounts.sol
├── NFTDescriptor.sol
├── NFTSVG.sol
├── OracleLibrary.sol
├── Path.sol
├── PoolAddress.sol
├── PoolTicksCounter.sol
├── PositionKey.sol
├── PositionValue.sol
├── SqrtPriceMathPartial.sol
├── TokenRatioSortOrder.sol
└── TransferHelper.sol

COPYRIGHT 2024. KALOS. all rights reserved

13

v3-router/contracts
├── FactoryOwner.sol
├──MultiSigWallet.sol
├── SmartRouter.sol
├── V2SwapRouter.sol
├── V3SwapRouter.sol
├── base
│ ├── ApproveAndCall.sol
│ ├── ImmutableState.sol
│ ├──MulticallExtended.sol
│ ├── OracleSlippage.sol
│ ├── PeripheryPaymentsExtended.sol
│ ├── PeripheryPaymentsWithFeeExtended.sol
│ └── PeripheryValidationExtended.sol
├── interfaces
│ ├── IApproveAndCall.sol
│ ├── IImmutableState.sol
│ ├── IMixedRouteQuoterV1.sol
│ ├── IMulticallExtended.sol
│ ├── IOracleSlippage.sol
│ ├── IPeripheryPaymentsExtended.sol
│ ├── IPeripheryPaymentsWithFeeExtended.sol
│ ├── IQuoter.sol
│ ├── IQuoterV2.sol
│ ├── ISmartRouter.sol
│ ├── ITokenValidator.sol
│ ├── IV2SwapRouter.sol
│ ├── IV3SwapRouter.sol
│ └── IWETH.sol
├── lens
│ ├──MixedRouteQuoterV1.sol
│ ├── Quoter.sol
│ ├── QuoterV2.sol
│ └── TokenValidator.sol
└── libraries
├── Constants.sol
├── PoolTicksCounter.sol
└── SmartRouterHelper.sol

COPYRIGHT 2024. KALOS. all rights reserved

14

Access Controls

○ MasterChef V2
■ Owner: Updates cake amount per block, pool info, whitelist, boost contract

address.
■ Boost Contract: Updates boost multiplier.

○ MasterChef V3
■ Owner: Updates emergency status, period duration receiver/lm pool

deployer/operator/boost contract address, pool info.
■ Operator: Accumulates reward.
■ Receiver: Changes latest period info.
■ Boost Contract: Updates boost multiplier.

○ V2 Core
■ feeToSetter: Updates feeTo (Protocol Fee) and feeToSetter address.
■ PancakeZapV1 Owner: Updates max zap reverse ratio value and can recover

wrong tokens.

○ V3 Core
■ Factory

○ Owner: Enables fee amount info, updates whitelist addresses, lm pool info,
fee protocol info, and collects protocol fee.

○ LmPool Deployer: Updates lm pool info.
■ Pool

○ Factory and Factory Owner : Modifies protocol fee and collects accumulated
protocol fee.

○ V3 Periphery:
■ NFTDescriptorEx Owner : Updates switchToHttpLink and NFTDomain.

○ V3 Lm Pool
○ Pool: Liquidity and reward growth global values are changed.
○ Master Chef: Updates position and deploys lm pool.

○ V3 Router
■ FactoryOwner

COPYRIGHT 2024. KALOS. all rights reserved

15

○ Owner: Updates operators, fee receivers, and arbitrarily calls external
contracts.

○ Operator: Removes liquidity from v2 pools and collects/distributes protocol
fees.

■ MultiSigWallet
○ Operator: Add transactions to tx list.

Each privileged account has permissions that can change the crucial part of the system.
Currently, all of these owners of the contracts are EOA. It is highly recommended to
maintain the private key as securely as possible and strictly monitor the system state
changes.

COPYRIGHT 2024. KALOS. all rights reserved

16

FINDINGS
1. Fee tier in the implementation does not match the fee
in the document

ID: DRAGON-01 Severity: Tips
Type: Documentation Difficulty: Low
File: v3-core/contracts/PancakeV3Factory.sol

Issue
The implementation does not support the 0.1% fee tier although the fee specified in the
document.

constructor(address _poolDeployer) {

poolDeployer = _poolDeployer;

owner = msg.sender;

emit OwnerChanged(address(0), msg.sender);

feeAmountTickSpacing[100] = 1;

feeAmountTickSpacingExtraInfo[100] = TickSpacingExtraInfo({whitelistRequested: false, enabled:

true});

emit FeeAmountEnabled(100, 1);

emit FeeAmountExtraInfoUpdated(100, false, true);

feeAmountTickSpacing[500] = 10;

feeAmountTickSpacingExtraInfo[500] = TickSpacingExtraInfo({whitelistRequested: false, enabled:

true});

emit FeeAmountEnabled(500, 10);

emit FeeAmountExtraInfoUpdated(500, false, true);

feeAmountTickSpacing[2000] = 40;

feeAmountTickSpacingExtraInfo[2000] = TickSpacingExtraInfo({whitelistRequested: false, enabled:

true});

emit FeeAmountEnabled(2000, 40);

emit FeeAmountExtraInfoUpdated(2000, false, true);

feeAmountTickSpacing[5000] = 100;

feeAmountTickSpacingExtraInfo[5000] = TickSpacingExtraInfo({whitelistRequested: false, enabled:

true});

emit FeeAmountEnabled(5000, 100);

emit FeeAmountExtraInfoUpdated(5000, false, true);

feeAmountTickSpacing[10000] = 200;

feeAmountTickSpacingExtraInfo[10000] = TickSpacingExtraInfo({whitelistRequested: false, enabled:

true});

emit FeeAmountEnabled(10000, 200);

emit FeeAmountExtraInfoUpdated(10000, false, true);

}

[https://github.com/dragon-swap-klaytn/dragon-smart-contracts/blob/d92a40a2261244aa682eb540fe1e94f4d5278b30/proj
ects/v3-core/contracts/PancakeV3Factory.sol#L36-L61]

COPYRIGHT 2024. KALOS. all rights reserved

17

The current implementation supports only 0.01%, 0.05%, 0.2%, 0.5%, and 1% fee tiers
without 0.1%.

[The Fee tier stated in the document]

Recommendation
Add the 0.1% fee tier to the factory.

COPYRIGHT 2024. KALOS. all rights reserved

18

2. Denial of Service in Permit of SwapRouter

ID: DRAGON-02 Severity: Tips
Type: Documentation Difficulty: Low
File: v3-periphery/base/SelfPermit.sol

Issue
The permit function in the SelfPermit contract can be front-run to cause a user's
transaction to fail (DoS). The signature (v, r, s) parameters for the permit call can be
searched in the mempool and can be used by another contract. Since the signature can be
used only once, calling the increaseLiquidity, decreaseLiquidity, and mint functions that
use the permit function can fail.

abstract contract SelfPermit is ISelfPermit {

/// @inheritdoc ISelfPermit

function selfPermit(

address token,

uint256 value,

uint256 deadline,

uint8 v,

bytes32 r,

bytes32 s

) public payable override {

IERC20Permit(token).permit(msg.sender, address(this), value, deadline, v, r, s);

}

[https://github.com/dragon-swap-klaytn/dragon-smart-contracts/blob/d92a40a2261244aa682eb540fe1e94f4d5278b30/proj
ects/v3-periphery/contracts/base/SelfPermit.sol]

Recommendation

Document the risk of the SelfPermit contract to prevent misuse of the functions.

COPYRIGHT 2024. KALOS. all rights reserved

19

3. Unnecessary function leads to less fee distribution

ID: DRAGON-03 Severity: Low
Type: Documentation Difficulty: High
File: v3-router/contracts/FactoryOwner.sol

Issue
Unlike removeFeeReceiver(), remove() does not decrease totalWeight. If this function is
called, the distribute() will distribute less fee, and the remaining fee will not be distributed.

function removeFeeReceiver(address _receiver) external onlyOwner {

uint256 len = feeReceiverLength();

uint256 index = type(uint256).max;

for (uint256 i = 0; i < len; i++) {

if (feeReceiver[i].receiver == _receiver) {

index = i;

break;

}

}

if (index != type(uint256).max) {

totalWeight = totalWeight - feeReceiver[index].weight;

feeReceiver[index] = feeReceiver[len - 1];

feeReceiver.pop();

emit RemoveFeeReceiver(_receiver, totalWeight);

}

}

function remove() external onlyOwner {

feeReceiver.pop();

}

[https://github.com/dragon-swap-klaytn/dragon-smart-contracts/blob/d92a40a2261244aa682eb540fe1e94f4d5278b30/proj
ects/v3-router/contracts/FactoryOwner.sol#L154-L175]

Recommendation
Remove remove() function

Fix Comment
[d74fceaa] commit removed the function.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/dragon-swap-klaytn/dragon-smart-contracts/commit/d74fceaaa24d304ebd693632c4a7c639f0422569

20

4. Outdated MultiSigWallet

ID: DRAGON-04 Severity: Tips
Type: Documentation Difficulty: Low
File: v3-router/contracts/MultiSigWallet.sol

Issue
The current MultiSigWallet implementation is outdated.

Recommendation

Use the latest version of multi-sig wallet.

Fix Comment

This contract will not be used.

COPYRIGHT 2024. KALOS. all rights reserved

21

5. Centralization Risk of arbitrary call in factory owner

ID: DRAGON-05 Severity: Tips
Type: Documentation Difficulty: Low
File: v3-router/contracts/FactoryOwner.sol

Issue
This contract has an arbitrary call function. It allows an owner to withdraw the deposited
LP tokens and the collected fee without using the intended functions.

function execute(address _to, uint256 _value, bytes memory _data) external onlyOwner {

(bool result,) = _to.call{value: _value}(_data);

if (!result) {

revert();

}

}

[https://github.com/dragon-swap-klaytn/dragon-smart-contracts/blob/main/projects/v3-router/contracts/FactoryOwner.sol#
L123-L128]

Recommendation
Remove execute() function and add event emission for monitoring

Fix Comment
The team replied they will not fix.
[bad8f6d7] commit added event emission.

COPYRIGHT 2024. KALOS. all rights reserved

https://github.com/dragon-swap-klaytn/dragon-smart-contracts/commit/bad8f6d7ba6cfc9800dc9de6561f483906bd5c13

22

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business
models, and codes that are secure without bugs. This report shall only be used to
discuss known technical issues. Other than the issues described in this report,
undiscovered issues may exist such as defects on the main network. In order to write
secure codes, correction of discovered problems and sufficient testing thereof are
required.

COPYRIGHT 2024. KALOS. all rights reserved

23

Appendix. A

Severity Level

CRITICAL Must be addressed as a vulnerability that has the potential to seize or
freeze substantial sums of money.

HIGH Has to be fixed since it has the potential to deny users compensation or
momentarily freeze assets.

MEDIUM Vulnerabilities that could halt services, such as DoS and Out-of-Gas,
need to be addressed.

LOW Issues that do not comply with standards or return incorrect values

TIPS Tips that makes the code more usable or efficient when modified

Difficulty Level

Low Medium High

Privilege anyone Miner/Block Proposer Admin/Owner

Capital needed Small or none Gas fee or volatile as
price change

More than exploited
amount

Probability 100% Depend on environment Hard as mining difficulty

COPYRIGHT 2024. KALOS. all rights reserved

24

Vulnerability Category

Arithmetic
• Integer under/overflow vulnerability
• floating point and rounding accuracy

Access & Privilege
Control

• Manager functions for emergency handle
• Crucial function and data access
• Count of calling important task, contract state change, intentional task delay

Denial of Service
• Unexpected revert handling
• Gas limit excess due to unpredictable implementation

Miner Manipulation
• Dependency on the block number or timestamp.
• Frontrunning

Reentrancy
•Proper use of Check-Effect-Interact pattern.
•Prevention of state change after external call
• Error handling and logging.

Low-level Call
• Code injection using delegatecall
• Inappropriate use of assembly code

Off-standard • Deviate from standards that can be an obstacle of interoperability.

Input Validation • Lack of validation on inputs.

Logic Error/Bug • Unintended execution leads to error.

Documentation •Coherency between the documented spec and implementation

Visibility • Variable and function visibility setting

Incorrect Interface • Contract interface is properly implemented on code.

COPYRIGHT 2024. KALOS. all rights reserved

25

End of Document

COPYRIGHT 2024. KALOS. all rights reserved

